
The 
Complete 
Machine 

Code 
Tutor 

HANDLÉIDING 

ATARI 



LAAD INSTRUCTIES VOOR DE ATARI COMPUTERS 

Schakel de computer uit en verwijder eventuele 
cartridges. Plaats de cassette met de goede zijde 
in de recorder. Schakel, terwijl u de START toets 
ingedrukt houdt, de computer in en start de cassette 
recorder (bij XL computers dient ook de OPTION toets te 
worden ingedrukt). Er verschijnt een mededeling in beeld 
tijdens het laden, en wanneer het laden voltooid is 
start het programma automatisch. 

Herhaal deze procedure wanneer u een volgende serie 
lessen wilt laden. 



HET MENU SCHERM 

Nadat het programma is geladen verschijnt dit scherm 
dat u een aantal keuze mogelijkheden biedt, Om tijdens 
het runnen van het programma naar dit scherm terug te 
keren drukt u op de SYSTEM RESET toets.Druk nooit op de 
SYSTEM RESET toets wanneer de computer bezig is een 
nieuwe serie lessen te laden, 

U maakt uw keuze uit de opties van dit menu door de 
RETURN toets in te drukken tot uw keuze wordt 
aangegeven, Druk vervolgens de spatie balk in. 

Nadat u een les heeft gekozen verschijnt een tekst 
pagina die op deze les betrekking heeft. Na het lezen 
hiervan toetst u de spatie balk weer in, waarna een 
volgende pagina of het menu verschijnt. 

Wanneer u een voorbeeld programma wilt zien wordt dit 
automatisch geassembleerd en gerund. Door het indrukken 
van de RETURN toets wordt het programma regel voor regel 
gerund. Daarbij wordt de beschrijving van iedere regel 
aan de onderzijde van het scherm afgebeeld. Wanneer u de 
RETURN toets indrukt wordt de aangegeven instructie 
uitgevoerd. De vlaggen en registers worden 
overeenkomstig gewijzigd, waarna de volgende instructie 
kan worden gerund. Wanneer het runnen van het programma 
wordt beeindigd door een 'BRK' instructie, aan het einde 
van het programma of door een fout, komt de MC tutor 
terug in de EDIT mode. Nu kunt u het programma w1Jz1gen, 
het assembleren (om het opnieuw te runnen), ,terugkeren 
naar het hoofd menu of het programma wissen om een nieuw 
programma in te typen. De volgende toetsen kunt u in de 
EDIT mode gebruiken: 

Toets 
START 
gerund 
SELECT 

Funktie 
Om het programma te assembleren, 

kan worden. 
Om terug te keren naar het hoofd 

2 

waarna het 

menu voor een 



volgende les. 
OPTION Om het programma uit het geheugen te wissen, 

In EDIT mode kunt u elk alfanumeriek karakter 
gebruiken bij het intypen van het programma. Daarnaast 
kunnen de volgende karakters worden gebruikt: 

t 
$ 
() 

Om een getal aan te geven. 
Om een hexadecimaal getal aan te geven, 
Om adresserings modes aan te geven, 
Idem. 

Wanneer het programma in de EDIT mode komt, of 
wanneer u in de EDIT mode de RETURN toets indrukt komt u 
in het LABEL gebied. Wanneer u een regel wilt labelen 
kunt u dit label nu intoetsen (tot een maximum van 6 
karakters) en de spatie balk indrukken. In het andere 
geval drukt u alleen de spatie balk in, Vervolgens kunt 
u een mnemonic intoetsen en weer op de spatie balk 
drukken (een mnemonic bestaat altijd uit 3 letters), 
Vervolgens voert u de operand in, bestaande uit O tot 7 
karakters. 

U kunt de cursor besturingstoetsen gebruiken om het 
programma te editten. Door de toets met de betreffende 
pijl in te drukken beweegt u de cursor in die richting, 
op deze wi3ze kunt u ieder deel van het programma snel 
en eenvoudig wijzigen. 

Wanneer u in de EDIT mode de START toets indrukt komt 
u in de RUN mode. Ook in deze mode hebben een aantal 
toetsen een speciale funktie. 

Toets 
OPTION 
weergave. 

Funktie 
Wisselen tussen decimale en hexadecimale 

SELECT Wisselen tussen onder en ziJ weergave. 
Automatisch wordt de zij weergave gekozen. In de onder 
weergave worden de adressen en de OP-codes van het 
programma afgebeeld. 

Overgaan in EDIT mode. 

3 



In het menu is steeds een mogelijkheid om een volgende 
serie lessen te laden, Dit gebruikt u om de tweede, 
derde en vierde serie lessen te laden, De eerste serie 
wordt tezamen met het hoofdprogramma geladen, Voor dat 
de lessen worden geladen vraagt het programma om een 
bevestiging, 
N.B. Druk tijdens het laden niet op SYSTEM RESET. 

4 



INHOUDSOPGAVE VAN DE CASSETIE 

Kant 1 

Hoofdprogramma Eerste fase van de lessen: 

Instructies 
Les 1 
Les 2 
Les 3 

voor het gebruik van het programma 
The registers (De registers). 
Memory locations (Geheugen locaties). 
Load and store (Laden en opslaan). 

Oefening 1 voor les 3. 

Les 4 
Les 5 

What's aflag? (Wat is een vlag?). 
Addition (Optellen). 

Oefening 1 voor les 5 
Oefening 2 voor les 5 

Les 6 : Substraction (Aftrekken). 

Oefening 1 voor les 6 
Oefening 2 voor les 6 

Les 7 
verlagen). 

Increments and decrements (Verhogen en 

Oefening 1 voor les 7 

Les 8 
Tweede fase van de lessen 

Transfers (Overbrengen). 

Oefening 1 voor les 8 

Les 9 
Les 10 

Binary notation (Binaire notatie). 
Shifts and rotates (Schuiven en roteren). 

5 



Oefening 1 voor les 10 

Les 11 : Two more flags (Nog twee vlaggen). 

Oefening 1 voor les 11 

Les 12 : Logical instructions (Logische instructies). 

Oefening 1 voor les 12 

Les 13 : Indexed addressing (geindexeerde 
adressering). 

Oefening 1 voor les 13 

Les 14 

Oefening 
Oefening 
Oefening 

Les 15 

Oefening 
Oefening 

Les 16 

Oefening 

Les 17 

1 
2 
3 

1 
2 

Kant 2 

Derde fase van de lessen 

Branches and jumps (Sprongopdrachten). 

voor les 14 
voor les 14 
voor les 14 

: Compares (Vergelijken). 

voor les 15 
voor les 15 

Subroutines 

1 voor les 16 

: Hexadecimal notation (Hexadecimale notatie). 

Oefening 1 voor les 17 

6 



Oefening 2 voor les 17 

Les 18 Binary coded decimal (Binair gecodeerd 
decimaal), 

Oefening 1 voor les 18 

Les 19 

Oefening 

Les 20 
modes), 

Oefening 
Oefening 

Les 21 

Oefening 

Les 22 

Oefening 

Les 23 
Les 24 

Vierde fase van de lessen 

The stack (De stack), 

1 voor les 19 

: More addressing modes (Andere adressering 

1 voor les 20 
2 voor les 20 

: More on the stack (Meer over de stack), 

1 voor les 21 

: The BIT instruction (De BIT instructie), 

1 voor les 22 

Interrupts 
What now? (Hoe verder?), 

7 



Les De registers 

Deze les behandelt de registers en hun gebruik. In de 
6502 processor, de belangrijkste chip van de ATARI, 
bevinden zich drie registers. Dit zijn resp. de 
acumulator, het X-register en het Y-register. De 
accumulator is een algemeen te gebruiken register en de 
meeste instrukties kunnen gebruik maken van dit 
register. De X en Y registers worden index registers 
genoemd en zijn bestemd voor meer speciale toepassingen. 

Wanneer u een programma runt ziet u de inhoud van de 
registers links op het scherm afgebeeld. De vlaggen 
worden ook afgebeeld, maar daar hoeft u in deze fase 
niet op te letten, omdat deze later worden besproken. 
Een register kan een getal van O tot 255 bevatten. 

Les 2 Geheugen locaties 

Wanneer u bekend bent met BASIC weet u wat een 
geheugen locatie is. Wanneer u in BASIC PEEK gebruikt 
leest u een geheugen locatie. En iedere keer dat u POKE 
gebruikt schrijft u naar een geheugen locatie. De ATARI 
computers hebben tussen 16 en 64K RAM geheugen en tussen 
10 en 24K ROM geheugen. Een geheugen locatie vertoont in 
die zin overeenkomst met een register dat het een getal 
van O tot 255 kan bergen. 

RAM betekent Random Access Memory, wat in feite 
inhoudt dat RAM geheugen locaties van inhoud kunnen 
veranderen. Programma's die in RAM zijn opgeslagen gaan 
verloren wanneer de stroom wordt uitgeschakeld. Dat is 
de reden dat programma's moetn worden gesaved op 
cassette of disc wanneer ze later weer gebruikt moeten 
worden. 

ROM 
geheugen 

staat voor Read Only Memory, wat inhoudt dat ROM 
locaties niet van inhoud kunnen veranderen. 

8 



Pogingen om de inhoud van ROM te veranderen hebben geen 
effect. Het ROM geheugen wordt voor de fabricage van de 
computer geprogrammeerd. Het bevat gewoonlijk machine 
code programma's die de computer vertellen wat er 
gebeuren moet na het inschakelen. In de ATARi is 
BASIC in ROM opgeslagen. U kunt ook ROM uitbreidings 
'cartridges' kopen die achter in de computer kunnen 
worden gestoken. De inhoud van het ROM geheugen gaat 
niet verloren wanneer de computer wordt uitgeschakeld. 

Wanneer u programma's runt met de simulator hebt u de 
beschikking over IK geheugen. Dit geheugen gebied loopt 
van adres O tot 1023 (in RAM), en u kunt dit gebruiken 
zoals u wilt. Het programma dat u met de simulator maakt 
wordt op een andere plaats in het geheugen opgeslagen en 
kan niet beschadigd worden. 

Les 3 Laden en opslaan 

Laad en opslag instructies beinvloeden geheugen 
locaties en registers. Een laad opdracht verandert de 
inhoud van een register. Een getal tussen Oen 1023 
wordt aangegeven achter de laad instructie, het adres 
van de geheugen locatie waarvan de inhoud in het 
register wordt geplaatst. Ook kunt u een getal 
(aangegeven met een E) opgeven van O tot en met 255 dat 
in het register wordt geplaatst. De volgende laad 
instructies zijn beschikbaar op de ATARI: 
LDA Laad accumulator. 
LDX Laad X-register. 
LDY Laad Y-register. 

Voorbeelden van het gebruik van laad instructies: 

LDA 1000 
1000. 
LDT ~34 

Laad accumulator met inhoud van locatie 

Laad het Y-register met het getal 34. 

9 



Een opslag instructie wordt gebruikt om de inhoud van 
een geheugen locatie te veranderen. De inhoud van ieder 
van de drie registers kan worden opgeslagen in het 
geheugen. Het getal achter de opslag instructie geeft de 
geheugen locatie aan. Voorbeelden van opslag 
instructies: 

STX 1 : Sla de inhoud van het X-register op in 
geheugen locatie 1. 
STA 1019 : Sla de inhoud van de accumulator op in 
geheugen locatie 1019. 

Oefening 1 voor les 3 

Dit is een eenvoudig programma om het gebruik van 
laad en opslag instructies te tonen. Druk de RETURN 
toets in om een regel te runnen. DE 'BRK' instructie 
dient om het runnen van het programma te stoppen en 
terug te gaan in de EDIT mode. In de EDIT mode kunt u 
door START in te drukken het programma opnieuw runnen. 
Door indrukken van SELECT keert u terug naar het hoofd 
memu zodat u een andere les of oefening kunt kiezen. Met 
behulp van de cursor toetsen kunt u het programma 
wijzigen.(u hoeft hierbij niet de CONTROL toets te 
gebruiken). Door intoetsen van OPTION wist u het huidige 
programma, zodat u een nieuw programma kunt intoetsen. 

Les 4 Wat is een vlag? 

Deze les behandeld vlaggen in het algemeen en de nul 
vlag in het bijzonder. een vlag kent twee toestanden. 
Hij kan ge"set" Zl.Jn, wat inhoudt dat hij de waarde 1 
heeft, of hij kan ge"reset" zijn, wat betekent dat hij 

10 



de waarde O heeft, Een vlag is dus als een schakelaar, 
waarbij "aan" overeenkomt met 1 en "uit" met 0, 

Les 5 Optellen 

Deze les behandelt eenvoudige optellingen in machine 
code. De instructie ADC (Add with carry) wordt gebruikt 
voor optellen in MC, De 6502 heeft geen instructie om op 
te tellen zonder carry, Daarom is het nodig voor een 
optelling de carry vlag te "reset"-ten, Hiervoor wordt 
de instructie CLC (Clear carry) gebruikt, De ADC 
instructie telt de waarde van carry op bij het resultaat 
van de optelling, dus zal de uitkomst 1 hoger zijn 
wanneer de carry vlag ge-"set" is, 

De carry vlag wordt overeenkomstig het resultaat van 
de optelling ingesteld, Wanneer het resultaat groter is 
dan 255 wordt de carry vlag ge-"set", Wanneer dus de 
carry vlag ge-"set" is na een optelling moet 256 bij het 
resultaat worden opgeteld om het juiste antwoord te 
vinden. Wanneer het resultaat bij voorbeeld 10 is met de 
carry vlag ge-"set" moet het juiste antwoord 266 zijn. 

Dit 
en CLC 
gevolgd 

Oefening 1 bij les 5 

is een voorbeeld programma om het gebruik van ADC 
te tonen, Merk op dat de ADC instructie wordt 

door een geheugen locatie of een getal, 
door#", aangegeven 

Oefening 2 bij les 5 

Dit korte programma introduceert de SEC (Set carry 
vlag) instructie, Dit omdat de SEC instructie de carry 
vlag 1 maakt, die bij de ADC instructie wordt opgeteld, 

11 



Les 6 Aftrekken 

Bij de 6502 gaat aftrekken op eenzelfde wiJze als 
optellen, waarbij de carry vlag echter andersom werkt. 
De instructie hiervoor is SBC (Substract with carry) Bij 
aftrekken wordt de carry vlag gebruikt om een waarde te 
"lenen". Daarom moet de carry vlag in plaats van 
ge-"reset" ge-"set" wordenmet de SEC instructie. Als na 
het aftrekken de carry vlag nul is betekent dit da het 
resultaat te klein is, en dat 256 afgetrokken moet 
worden om het juiste antwoord te vinden. Als voor het 
aftrekken de carry vlag ge-"reset" is zal het resultaat 
1 minder zijn dan wanneer de vlag ge-"set" is. 

Oefening 1 voor les 6 

Dit voorbeeld programma toont het effect van de carry 
vlag voor en na de SBC instructie. Let op het resultaat 
van het aftekken van O van 3 wanneer de carry vlag nul 
is. 

Oefening 2 bij les 6 

Dit is een kort programma dat toont wat gebeurt 
wanneer u een aftrekking doet met een negatief 
resultaat. Let daarbij op de carry vlag. 

Les 7 Verhogen en verlagen 

Deze instructies zijn eenvoudig te begrijpen en toe 

12 



te passen, Het verhogen dient om de inhoud van een 
register of een geheugen locatie met 1 te vermeerderen, A 
ls een register 255 bevat voor de verhoging zal het 
daarna O bevatten, Een verlaging dient om de inhoud van 
een register of een geheugen locatie met 1 te 
verminderen, Als het register of de geheugen locatie 0 
bevat voor de verlaging dan zal die daarna 255 bevatten, 
De volgende verhoging en verlaging instructies zijn 
beschikbaar: 

DEX 
DEY 
INX 
INY 
DEC 
INC 

Verlaag X-register 
Verlaag Y-register, 
Verhoog X-register, 
Verhoog Y-register, 
Verlaag geheugen locatie. 
Verhoog geheugen locatie, 

Oefening 1 bij les 7 

Dit programma gebruikt alle eerder genoemde instructies 

Les 8 Transfer (Overbreng) instructies 

Een transfer is het overbrengen van een waarde van 
een register naar een ander.De mnemonics van alle 
overbreng instructies beginnen met een T, De volgende 
letter geeft de herkomst aan en de derde de bestemming. 
De volgende instructies zijn beschikbaar: 

TAX 
TXA 
TAY 
TYA 

Breng accumulator over naar X, 
Breng X register over naar accumulator, 
Breng accumulator over naar Y. 
Breng Y register over naar accumulator. 

13 



Twee andere speciale transfer instructies zullen 
later worden besproken, 

Dit programma 
instructies, Laat 
instructie. Deze 
accumulator, dus 
instructie, 

Oefening 1 bij les 8 

toont de werking van transfer 
u niet misleiden door de eerste TXA 

brengt het X register over naar de 
de accumulator bevat de waarde O na de 

Les 9 Binaire notatie 

Deze 
stelsel, 
gebruikt, 
binaire 
nul kan 
getallen 

les behandeld een nieuw talstelsel, het binaire 
in dit systeem waden maar twee cijfers 

nul en een, Een vlag is een goed voorbeeld van 
notatie, omdat een vlag alleen de waarde een of 
hebben, Na het doornemen van de les over binaire 
kan de volgende tabel van nut zijn: 

Waarden van bit 7 tot bit 0: 

Bit nummer 
Waarde 

7 6 5 
128 64 32 

4 3 
16 8 

2 
4 

1 
2 

0 
1 

Les 10 Shifts and Rotates (Schuiven en roteren) 

Deze instructie houdt direct verband met het 
veranderen van binaire cijfers, Ale schuif en roteer 
instructies worden gevolgd door een A als de instructie 

14 



op deaccumulator betrekking heeft, of door een getal als 
de instructie een geheugen locatie betreft. De volgende 
lijst geeft een overzicht van de schuif en roteer 
instructies die beschikbaar zijn op de 6502: 

ROR Rotate right 
Dit is een 9 bit rotatie Alle bits in de accumulator 

of de geheugen locatie worden 1 bit naar rechts 
geroteerd. De carry wordt in bit 7 geplaatst en bit O in 
de carry. 

ROL Rotate left 
Dit is ook een 9 bit rotatie. Alle bits worden 1 

plaats naar links geroteerd, decarry wordt in bit 0 
geplaatst en bit 7 in de carry. 

LSR Logical shift right 
Hierbij wordt een nul in bit 7 geplaatst en schuiven 

alle andere bits naar rechts. Bit nul wordt in de carry 
geplaatst. Deze instructie heeft het effect van een 
deling door 2. De carry geeft aan of er een "rest" van 
een halve bit is overgebleven. 

ASL Arithmetic shift left 
Er wordt een nul in bit O geplaatst en alle bits 

schuiven een plaats naar links. De inhoud van bit 7 
wordt in de carry geplaatst. Deze instructie heeft het 
effect van een vermenigvuldiging met 2. De carry geeft 
aan dat het resultaat te groot was en 256 bij het 
antwoord meot worden opgeteld. 

Oefening 1 bij les 10 

Dit is een programma dat alle schuif en roteer 
instructies van de 6502 gebruikt. Let vooral op het 
effect op de carry van alle instructies. 

15 



Les 11 Two more flags (Nog twee vlaggen) 

Deze les behandelt de overflow vlag en de negatief 
vlag, Vaak kan de overflow vlag na een reken operatie 
veranderd z1Jn, De vlag is 1 als na een instructie het 
teken verkeerd is, dat wil zeggen een carry van bit 6 
naar bit 7, De instructie CLV (clear overflow) wordt 
gebruikt om de overflow vlag te "reset"-ten, De negatief 
vlag geeft na een instructie de toestand van bit 7 , de 
teken bit, weer, Wanneer na een instructie bit 7 een is, 
is ook de negatief vlag een, en andersom. 

Dit 
overflow 
worden, 

Oefening 1 bij les 11 

programma demonstreert 
en negatief vlaggen 

in welke 
ge-"set" en 

gevallen de 
ge-"reset" 

Les 12 Logical instructions (logische instructies) 

Deze instructies beinvloeden ook direct binaire 
getallen. Hier wordt een waarheids tabel gegeven voor 
alle logische instructies. Bij een logische,instructie 
worden alle bits van de accumulator vergeleken met de 
bits van een geheugen locatie of een getal, en het 
resultaat van de vergelijking wordt in de accumulator 
geplaatst, 

ORA Logical or accumulator (logische or op de 
accumulator) 

16 



Input 1 
Input 2 

0 0 1 1 
0 1 0 1 

Resultaat O 1 1 1 

Een of beide bits 1 geeft als resultaat 1, anders O. 

AND Logica! and accumulator (logische and op de 
accumulator) 

Input 1 
Input 2 

0 0 1 1 
0 1 0 1 

Resultaat O O O 1 

Als beide bits 1 zijn is het resultaat 1, anders O. 

EOR 

Input 1 
Input 2 

Exclusive or accumulator 

0 0 1 1 
0 1 0 1 

Resultaat O 1 1 0 

Als beide bits 1 of O zijn is het resultaat O, anders is 
het resultaat 1. 

Oefening 1 bij les 12 

Dit voorbeeld programma gebruikt deze drie logische 
instructies. 

Les 13 Indexed addressing (geindexeerde adressering) 

Bij 
register 

deze adressering wordt de inhoud van het X of Y 
opgeteld bij het opgegeven adres om het te 

17 



gebruiken adres te vinden. Voorbeelden van geindexeerde 
adressering: 

LDA 1000,X Tel de inhoud van X op bij 1000 en laad de 
accumulator met de inhoud van dit adres. 
EOR 300,Y Tel de inhoud van Y op bij 300. Pas 
vervolgens een exclusive OR toe op de accumulator en dit 
adres. 

18 



Les 14 Branches and jumps (Sprongopdrachten) 

Deze instructies worden gebruikt om de volgorde 
waarin de instructies van het programma worden 
uitgevoerd te veranderen. Normaal worden de instructies 
in volgode van het laagste adres naar het hoogste 
uitgevoerd. Een sprong instructie is equivalent aan het 
GOTO statement in BASIC. Een voorwaardelijke 
sprongopdracht komt overeen met IF ••• THEN GOTO. Wanneer 
u met de simulator programma's schrijft moet u voor een 
sprong een label opgeven. Om een label in te voeren 
drukt u niet op de spatie balk voor u de instructie 
intypt. In plaats daarvan typt u een label van ten 
hoogste 6 karakters in, gevolgd door indrukken van de 
spatie balk. Wanneer u een sprong naar een label wilt 
uitvoeren typt u de naam van de label in na de 
instructie. De volgende sprong instructies zijn 
beschikbaar: 

JMP Sprong naar een label 
BEQ Sprong indien nul (nul vlag ge-"set") 
BNE Sprong indien niet nul 
BCS Sprong indien carry ge-"set" 
BCC Sprong indien carry niet ge-"set" 
BVS Sprong indien overflow (overflow vlag 
ge-"set") 
BVC Sprong indien geen overflow 

Oefening 1 bij les 14 

Dit programma gebruikt het X register om van 10 af te 
tellen tot O. BEQ wordt gebruikt om de waarde nul te 
detecteren. 

Oefening 2 bij les 14 

Dit programma deelt 58 door S. Na afloop van de run 

19 



bevat het X register het antwoord en het Y register de 
rest. 

Oefening 3 bij les 14 

Dit programma vermenigvuldigt de inhoud van X met de 
inhoud van Y. U kunt het programa wijzigen om andere 
getallen met elkaar te vermenigvuldigen, wanneer de 
uitkomst maar niet groter is dan 255. 

Les 15 Compares (Vergelijkingen) 

Een vergelijking is een aftrekking die de accumulator 
niet verandert. Hij beinvloed de vlaggen op dezelfde 
wiJze als een aftrekking. Een vergelijk instructie ka 
gebruikt worden om het X of het Y register te 
vergelijken, zowel als de accumulator. Het is echter 
niet nodig de carry vlag 1 te maken, omdat we niet te 
maken hebben met een echte aftrekking. Vergelijk 
instructies in combinatie met sprongopdrachten bieden de 
programmeur vele mogelijkheden. De volgende vergelijk 
instructies zijn beschikbaar: 

CPM 
geheugen 
CPX 
geheugen 
CPY 
geheugen 

Deze 
vergelijk 
vlaggen 
werkt. 

Vergelijk accumulator met een getal of een 
locatie. 
Vergelijk X register met een getal of een 

locatie. 
Vergelijk y register met een getal of•een 

locatie. 

Oefeningen 1 en 2 bij les 15 

voorbeeld programma's tonen 
instructies. Let op het 

en verander het programma 

Les 16 Subroutines 

20 

de werking van 
veranderen van de 
om te zien hoe het 



Een subroutine is als een GOSUB commando in BASIC. Om 
een subroutine aan te roepen gebruikt u JSR (Jump to 
subroutine). De instructie wordt gevolgd door een label, 
zoals bij JMP. Deze instructie werkt exact gelijk als 
JMP, echter wanneer na een JSR instructie een RTS 
(return from subroutine) wordt uitgevoerd springt de 
computer terug naar de instructie na de JSR instructie. 
De RTS instructie komt dus overeen met RETURN in BASIC. 

Oefening bij les 16 

Dit programma gebruikt subroutines om 5 met 8 te 
vermenigvuldigen. 

Les 17 Hexadecimal 

Dit is een tal stelsel zoals het decimale stelsel en 
het binaire stelsel. De volgende tabel kan van nut zijn: 

Dec -Bin Hex Dec Bin Hex 
0 0000 0 8 1000 8 
1 0001 1 9 1001 9 
2 0010 2 10 1010 A 
3 0011 3 11 1011 B 
4 0100 4 12 1100 C 
5 0101 5 13 1101 D 
6 OllO 6 14 1110 E 
7 0111 7 15 llll F 

Oefening 1 bij les 17 

Dit programma gebruikt hexadecimale getallen, 
voorafgegaan door een $ karakter. Steeds als u dit 
karakter tegen komt betekent het dat het gegeven getal 
in HEX is. U kunt het in uw eigen programma's gebruiken 
om hexadecimale getallen aan te geven. Tijdens het 
runnen van het programma kunt u wisselen tussen decimale 
en hexadecimale notatie door OPT in te drukken. Druk 
tijdens het runnen van dit programma op toets OPT om dit 

21 



te proberen, 

Les 18 Binary coded decimal (binair gecodeerd decimaal, 
BCD) 

In dit systeem wordt een byte opgedeeld in 2 delen 
die ieder een decimaal cijfer aangeven, Om over te gaan 
op BCS wordt de instructie SED (Set decimal mode flag) 
gebruikt, Om terug te gaan dient de instructie CLD 
(clear decimal mode flag), Om met een getal in BCD te 
werken wordt het omgezet in HEX, Daarom is het 
noodakelijk om HEX mode in te schakelen wanneer in BCD 
wordt gewerkt, Denk eraan dat hoewel BCD hexadecimale 
getallen gebruikt, de cijfers A - F niet worden 
gebruikt, 

Oefening 1 bij les 18 

Dit programma demonstreert BCD, Kies zodra het 
programma wordt gerund de HEX mode, anders zal de 
uitkomst geen betekenins hebben, De ADC en SBC 
instructies kunnen in BCD gebruikt worden, de carry vlag 
wordt ge-"set" als de uitkomst groter dan 99 is en 
ge-"reset" als de uitkomst kleiner dan 00 is, 

Les 19 The stack 

De stack is pagina van het geheugen, page 1, De 
stack gebruikt dus 256 bytes (HEX 100) van het geheugen, 
vanaf locatie 256 tot 512 (HEX: 100 tot 200), De stack 
pointer staat oorspronkelijk op 255 (HEX: FF), Hier 
wordt 100 HEX opgeteld, zodat de eerste invoer van de 
stack gebeurt op lFF, Volgende invoer verlaagt de stack 
pointer, het weghalen van invoer verhoogt de pointer, De 
volgende instructies hebben invloed op de stack: 

PHA Breng accumulator naar de stack 
PLA Breng inhoud stack over naar accumulator 
TXS Breng de inhoud van het X register over naar 

22 



de stack 
TSX Breng de inhoud van de stack over naar het X 
register 

Oefening 1 bij les 19 

Dit programma toont het gebruik van de hier boven 
vermelde instructies, Denk eraan dat ook de instructies 
JSR en RTS de stack beinvloeden, 

Les 20 More addressing modes (andere adresserings modes) 

De wijze van adressering bepaald waar de 6502 zijn 
gegevens vandaan zal halen, De verschillende modes 
worden uitgebreid besproken in de les, Hier volgt een 
lijst van alle instructies die in de verchillende modes 
kunnen worden gebruikt: 

Implied.,: 

BRK CLC CLD 
INY NOP PHA 
SED SEI TAX 

CLI CLV DEX 
PHP PLA PLP 
TAY TSX TXA 

DEY 
RTS 
TXS 

INK 
SEC 
TYA 

Merk op dat NOP 
doet, De instructie 
hier niet vermeld, 
wordt verwerkt, 

staat 
RTI 

omdat 

voor No Operation en niets 
(return from interrupt) wordt 
deze niet door de simulator 

Accumulator addressing 

Deze adressering wordt aangegeven door de letter A 
achter de instructie, en geeft aan dat de instructie op 
de accumulator moet worden uitgevoord, De volgende 
instructies zijn beschikbaar: 

ASLA LSR A ROL A ROR A 

23 



Absolute addressing 

De volgende instructies kunnen worden uitgevoerd op 
een absoluut geheugen adres: 

ADC AND ASL 
EOR INC LDA 
ROR SBC STA 

BIT CMP CPX 
LDX LDY LSR 
STX STY 

CPY DEC 
ORA ROL 

Denk er aan dat de instructies JMP en JSR absolute 
instructies zijn, die met de simulator echter alleen met 
labels kunnen worden gebruikt. 

Zero page addressing 

De volgende instructies kunnen met zero page 
addressing worden gebruikt: 

ADC AND ASL BIT CMP CPX CPY DEC 
EOR INC LDA LDX LDY LSR ORA ROL 
ROR SBC STA STX STY 

Immediate addressing 

De immediate adresserings wijze wordt aangegeven door 
een (:1$) voor een getal. De instructies die bij deze 
wijze van adresseren kunnen worden gebruikt zijn: 

ADC AND CMP CPX CPY EOR LDA LDX 
LDY ORA SBC 

Absolute,Y addressing 

Het Y register wordt opgeteld bij het adres wat een 
nieuw adres oplevert. Dit nieuwe adres wordt gebruikt 
voor de instructie. De volgende instructies kunnen 
worden gebruikt: 

ADC AND CMP EOR LDA LDX ORA SBC STA 

24 



Absolute,X addressing 

Dit komt overeen met absolute,Y echter het X register 
wordt gebruikt in plaats van het Y register, De volgende 
instructies zijn beschikbaar: 

ADC 
LDY 

AND 
LSR 

ASL CMP 
ORA ROL 

DEC 
ROR 

EOR 
SBC 

INC 
STA 

(Indirect,X) addressing 

LDA 

Bij deze wijze van adresseren wordt de inhoud van het 
X register opgeteld bij de inhoud van een zero page 
adres, wat een ander zero page adres oplevert, De inhoud 
van deze twee byte zero page pointer wijst naar een 
ander adres, waarop de instructie wordt uitgevoerd, De 
volgende instructies zijn beschikbaar: 

ADC AND CMP EOR LDA ORA SBC STA 

(Indirect),Y addressing 

Bij deze mode wordt een zero page adres opgegeven, 
Dit adres is een twee byte pointer naar een ander adres, 
De inhoud van het Y register wordt vervolgens opgeteld 
bij dit adres, wat een ander adres oplevert waarop de 
instructie wordt uitgevoerd, De volgende instructies 
kunnen worden gebruikt: 

ADC AND CMP EOR LDA ORA SBC STA 

Zero page,X addressing 

Deze adressering komt overeen met absolute,X 
adressering, echter wordt een zero page adres opgegeven 
in plaats van een absoluut adres, Deze adressering 
gebruikt daarom maar twee bytes per instructie in plaats 

25 



van drie. De volgende instructies kunnen worden 
gebruikt: 

ADC AND ASL CMP DEC EOR INC LDA 
LDY LSR ORA ROL ROR SBC STA STY 

Zero page,Y addressing 

Deze adressering komt overeen met zero page,X, echter 
het Y register wordt gebruikt in plaats van het X 
register. De volgende instructies kunnen worden 
gebruikt: 

LDX STX 

Relative addressing 

In de simulator moet deze adressering worden gebruikt 
met een label. Een relatieve sprong wordt alleen dan 
gemaakt als de voorwaarde in de instructie waar is. In 
dat geval wordt een sprong byte bij de programma teller 
opgeteld. De sprong byte wordt opgeslagen als "two's 
complement". Daarom kan de programma teller met niet 
meer dat +127 of -128 worden veranderd. Let er daarom op 
als u relatieve sprongen gebruikt dat de sprong byte 
niet te groot is. Een relatieve spronginstructie 
gebruikt maar twee bytes, terwijl een absolute sprong er 
drie nodig heeft. De volgende instructies kunnen worden 
gebruikt: 

BCC BCS BEQ BMI BNE BPL BVC BVS 

(Indirect) addressing 

Deze adressering kan niet met de simulator worden 
gebruikt. Een gewone 6502 assembler kan deze adressering 
echter wel verwerken. De inhoud van een adres levert een 
nieuw adres op, dat voor de instructie wordt gebruikt. 
De enige instructie die deze adressering gebruikt is JMP 

26 



(xxxx). 

Oefening 1 en 2 bij les 20 

Deze voorbeeld programma's gebruiken de meest 
gecompliceerde w1Jzen van adressering. Bestudeer deze 
programma's zorgvuldig omdat ze u veel over programmeren 
kunnen leren. 

Les 21 More on the stack (meer over de stack) 

Deze les bespreekt hoe vlaggen in de 6502 processor 
worden opgeslagen in het Processor Status Register 
(PSR). De vlaggen worden op de volgende wijze opgeslagen: 

Bit : 7 6 
Vlag: N V 

5 4 
- B 

3 
D 

N :, Negatief vlag 
V Overflow vlag 

: Niet gebruikt 

2 
I 

1 0 
Z C 

B : Break vlag (wordt niet gebruikt door de 
simulator) 
I "Interrupt geblokkeerd" vlag 
Z Nul vlag 
C Carry vlag 

Slechts twee instructies beinvloeden direct het PSR. 
Deze saven en herstellen de waarden van de verschillende 
vlaggen door het PSR op de stack op te slaan en weer 
terug te halen. De instructie PHP (Push PSR onto stack) 
slaat alle vlaggen op, de instructie PLP (Pull PSR from 
stack) brengt de vlaggen weer terug in het PSR. 

Oefening 1 bij les 21 

Dit programma demonstreert wat er gedaan kan worden 
met de instructies PHP en PLP. 

27 



Les 22 The BIT instruction 

Deze instructie is in feite een AND instructie die de 
accumulator intact laat, De BIT instructie wordt gevolgd 
door een geheugen adres, wat in zero page of absolute 
addressing kan worden opgegeven, De inhoud van de 
accumulator wordt ge-AND met de geheugen locatie en de 
vlaggen worden overeenkomstig ingesteld, Bit 7 van de 
geheugen locatie wordt in de negatief vlag en bit 6 in 
de overflow vlag geplaatst, De nul vlag wordt ge-"set" 
als geen enkele bit in de geheugen locatie overeenkomt 
met de bits van de accumulator, 

Oefening 1 bij les 22 

Dit programma toont de werking van de BIT instructie, 

Les 23 Interrupts 

In deze les wordt een poging gedaan een zeer 
gecompliceerd onderwerp op heldere wijze te bespreken: 
Interrupts, Met de simulator kunnen geen interrupt 
routines geschreven worden, De instructies SE! (Set 
interrupt disable vlag) en CLI (Clear interrupt disable 
vlag) kunnen met de simulator worden gebruikt om het 
effect ervan op de vlaggen te tonen, 

Wat nu? 

Hiermee bent u aan het einde gekomen van de cursus 
6502 machine code programmeren, U kunt nu uw eigen MC 
programma's schrijven met behulp van een normale 6502 
assembler, Deze assemblers ziJn minder gebruikers 
vriendelijk, maar bieden meer mogelijkheden, Een fout in 
uw programma kan er echter voor zorgen dat uw computer 
"crasht" of vast loopt, Daarom is het aan te raden ieder 
machine code programma te saven voor het wordt gerund, 

28 



Denk erom dat een normaal MC programma bliksemsnel wordt 
uitgevoerd, en niet op een toetsindruk wacht om de 
volgende instructie uit te voeren, zoals de simulator! 

Als u niet zeker weet welk effect een instructie zal 
hebben kunt u deze altijd uitproberen met de simulator. 
Typ het programma in, controleer de werking en kijk of 
de vlaggen worden veranderd als bedoeld. Wanneer u 
tevreden bent over de werking kunt u het programma in 
een echte assembler intoetsen. 

VEEL SUCCES! 

29 



APPENDIX A: TE GEBRUIKEN INSTRUCTIES 

De instructies die de simulator kan verwerken zijn: 

Instructie Functie 

ADC Add with carry (optellen met carry) 
AND Logical AND accumulator (logische AND) 
ASL Arithemetic shift left (schuiven naar links) 

BCC Branchon carry clear (sprong als carry=0) 

BCS Branchon carry set (sprong als carry=l) 

BEQ Branchon zero (sprong als 0) 
BIT Test memory bits against accumulator 

(test bits van geheugen tegen accumulator) 

BMI Branchon minus (sprongindien neg.) 
BNE Branchon not equal zero (sprong indien niet 0) 

BPL Branchon positive (sprong indien pos.) 

BRK Break (stop programma) 
BVC Branchon overflow clear 

(sprong indien geen overflow) 
BVS Branchon overflow set (sprong indien overflow) 

CLC Clear carry flag (stelt carry vlag op 0) 
CLD Clear decimal mode flag (beeindig decin:ale mode) 

CLI Clear interrupt disable flag 
(stelt interrupt disable vlag op 0) 

CLV Clear overflow flag (oerflow vlag= 0) 
CMP Compare accumulator (vergelijk met accum.) 

30 



CPX Compare X register (idem X register) 
CPY Compare Y register (idem Y register) 

DEC Decrement memory location 
(verminder geheugen locatie) 

DEX Decrement X register (verminder X re~ister) 

DEY Decrement Y register (verminder Y register) 

EOR Exclusive OR accumulator 
(Exclusief OR operatie op accumulator) 

INC Increment memory location 
(verhoog geheugen locatie) 

INX Increment X register (verhoog X register) 
INY Increment Y register (verhoog y register) 
JMP Unconditional jump (onvoorwaardelijke sprong) 

JSR Jump to subroutine (sprong naar subrout.) 
LDA Load accumulator (laad accumulator) 

LDX Load X register (laad X register) 
LDY Load Y register (laad Y register) 
LSR Logical shift right (schuif naar rechts) 
NOP No operation (geen functie) 
ORA Logical OR accumulator (OR operatie op accum.) 

PHA Push accumulator onto stack 
(breng accum. inhoud naar stack) 

PHP Push processor status register onto stack 
(breng PSR over naar de stack) 

PLP Pull PSR from stack (haal PSR van de staclc) 

ROL Rotate left (roteer naar links) 
ROR Rotate right (roteer naar rechts) 

RTI Return from subroutine (terugkeren van sub.) 

31 



SBC Substract with carry (aftrekken met carry) 

SEC Set carry flag (Maak carry vlag 1) 
SED Set decimal mode flag (overgaan op decimael) 

SE! Set interrupt disable flag 
(interrupts niet toegestaan) 

STA Store accumulator (sla accumulator inhoud op) 

STX Store X register (idem x register) 
STY Store Y register (idem Y register) 
TAX Transfer accumulator to X register 

(breng accumulator over naar X register) 

TAY Transfer accumulator to Y register 
(breng accumulator over naar Y register) 

TSX Transfer stack pointer to X register 
(breng stack pointer over naar X reg.) 

TXA Transfer X register to accumulator 
(breng X register over naar accum.) 

TXS Transfer X register to stack pointer 
(breng X register over naar stack pointer) 

TYA Transfer y register to accumulator 
(breng Y register over naar accum.) 

32 



APPENDIX B: SAMENVATIING FOUTMELDINGEN 

Soms verschijnt een foutmelding aan de onderzijde van 
het beeld. Gewoonlijk zullen fouten aan het licht treden 
bij het assembleren of runnen van een programma. Wanneer 
een foutmelding verschijnt kunt u ·RETURN indrukken om 
terug te keren naar de EDIT mode om de fout te 
herstellen. 

Duplicate 
label meer 
twee maal 

label error: Deze melding geeft aan dat een 
dan eens voorkomt. Wan·neer u bij voorbeeld 

het label 'FRED' heeft gebruikt weet het 
niet welk label u bedoelt. Verander de label programma 

namen, zodat iedere naam slechts 1 maal voorkomt. 

Label not found 
instructie waarin 

error: Dit betekent dat bij een 
een label werd gebruikt geen 
werd gevonden. Deze fout zou bij 
de instructie JMP JOHN wanneer de 

overeenkomstige label 
voorbeeld optreden bij 
computer, het label JOHN nergens kan vinden. 

Number bigger than 255 
werd een getal gevonden 
computer een getal 
verwachtte.De instructie 
opleveren. 

error: tijdens het assembleren 
groter dan 255, terwijl de 
kleiner of gelijk aan 255 

LDA [400 zou deze foutmelding 

Resulting memory address greater than 1024 error: 
Deze fout kan alleen tijdens het runnen optreden. Het 
betekent dat een geheugen locatie groter dan 1024 werd 
gebruikt. Wijzig het programma zodat het alleen de 
adressen O tot 1024 gebruikt. 

Error 7 (check manual): deze foutmelding mag .nooit 
optreden. Wanneer deze fout optreedt betekent dat dat 
het programma niet goed geladen is. Spoel de tape terug 
en laadt opnieuw. 

33 



Instruction not recognized error: Deze melding 
verschijnt wanneer tijdens het assembleren een 
instructie niet wordt begrepen, gewoonlijk veroorzaakt 
door een fout in de syntaxis van de instructie. Er 
behoort een spatie te zijn tussen de mnemonic en een 
label en tussen de mnemonic en de operand (indien 
aanwezig). In een label, mnemonic of operand behoren 
geen spaties te ziJn. Kontroleer ook of u het juiste 
aantal komma's, haakjes e.d. heeft gebruikt. 

34 



OVERZICHT 

Assembly language: Taal die mnemonics gebruikt als 
weergave van MC instructies. Een assembly language 
programma kan niet worden gerund wanneer het niet is 
geassembleerd. 

Binary: Twee. In het binaire stelsel worden de 
cijfers Oen 1 gebruikt om getallen weer te geven. 

Binary coded decimal (BCD): 
"nybble" een decimaal cijfer 
daarom twee cijfers weergeven. 

Een systeem waarin een 
weergeeft. Een byte kan 

Bit: Een binaire eenheid, is ofwel 1 of 0. 

Bug: Een fout of een ongewenste eigenschap van een 
programma, die maakt dat het programma niet of niet goed 
werkt. 

Character: Een element van een verzameling van 
symbolen, zoals een letter, cijfer of teken. 

Chip: Gebruikelijke benaming voor geintegreerde 
schakeling, afgeleid van het silicium schijfje waarop de 
schakeling is aangebracht. 

Computer: Een machine die gegevens verwerkt volgens 
bepaalde instructies en de resultaten van de verwerking 
naar buiten brengt. Benaming voor het geheel van 
processor en I/0 apparatuur. 

Crash: Term die aanduidt dat de computer geen invoer 
van het toetsenbord meer accepteert. Oplossing is het 
uit en aan schakelen van de computer. 

Cursor: Een Teken dat op het TV scherm aangeeft waar 

35 



gegevens worden ingevoerd. 

DATA: Een gegeven dat de computer kan verwerken. 

Editing: Het proces van het wijzigen van gegevens 
voor men ze door de processor laat verwerken. 

Execute: Het uitvoeren van de instructies van een 
programma. Een micro processor voert een programma uit 
door het lezen en vervolgens verwerken van de 
instructies. 

Graphics: Term die aanduidt dat gegevens in de vorm 
van beelden worden gepresenteerd. Beelden op het TV 
scherm worden afgebeeld in "pixels". 

Hardware: De vaste delen van de computer. 

Hexadecimal: Getal 
verschillende tekens als 
tekens 0-9 en A-F gebruikt. 

stelsel gebaseerd op 16 
cijfers. Gewoonlijk worden de 

Instruction: Een bepaalde opdracht aan de processor. 
Een MC programma bestaat uit instructies. 

Machine Code (MC); Binaire weergave van de 
instructies aan 
door de micro 
bewerking. 

de micro processor. Machine code kan 
processor worden verwerkt zonder verdere 

Memory: Verzameling van geintegreerde schakelingen 
waarin gegevens worden opgeslagen. Iedere bit wordt 
opgeslagen als een elektrisch signaal in de IC. 
Geheugens worden onderverdeeld in RAM en ROM, hun 
grootte wordt aangegeven in K (kilobytes). 

Micro processor: Een geintegreerde schakeling die 
alle componenten bevat voor het verwerken van gegevens. 
Een micro processor moet verbonden zijn met I/0 

36 



apparatuur en geheugen om te kunnen werken. 

Mnemonic: een groep van 3 of 4 karakters die een MC 
instructie voorstellen. Iedere mnemonic wordt omgezet in 
een MC instructie door een assembler. 

Nybble: Een groep van 4 bits. Een byte bestaat uit 
twee nybbles. 

Object program: Een programma in MC. Een "source 
program", dat niet door de processor kan worden 
uitgevoerd, wordt geassembleerd door een assembler, die 
het "object program" genereert. Dit "object program" 
bevindt zich in het geheugen en kan worden uitgevoerd 
door de processor. 

Operating system: Een machine code programma, 
onderdeel van de systeem software, dat de processor in 
staat stelt te functioneren. 

Page: Gebruikt in verband met geheugen: 265 bytes. 

Program: Een verzameling opdrachten die de micro 
processor een bepaalde taak laten uitvoeren. 

RAM: Random Access Memory. Naar 
worden geschreven, zowel als van 
geheugen wordt het programma 
uitschakelen van de computer gaan alle 
gegevens verloren. 

dit geheugen kan 
gelezen. In dit 
opgeslagen. Bij 

in RAM opgeslagen 

ROM: Read Only Memory. Dit geheugen wordt in de 
fabriek waar de computer gefabriceerd wordt 
geprogrammeerd. Het bevat gewoonlijk het operating 
system en andere programma's die de computer nodig heeft 
bij het inschakelen. Het in- en uitschakelen van de 
computer heeft geen effect op het ROM geheugen. 

Software: De computer programmatuur. 

37 



Source program: Programma bestaande uit mnemonics die 
voor mensen begrijpelijk zijn. Dit programma moet worden 
geassembleerd voor het kan worden uitgevoerd. 

38 



@aackasaft./new generatian 

269 




