The
Complete

Machine
Code

Tutor
==Y\
= 57

HANDLEIDING

ATARI

LAAD INSTRUCTIES VOOR DE ATARI COMPUTERS

Schakel de computex[i/uit \'/én verwijder eventuele
cartridges. Plaats [de cassette met de goede zijde
in de recorder, Schakel, \terwijl u de START toets
ingedrukt houdt, de computer in en start de cassette
recorder (bij XL computers dient ook de OPTION toets te
worden ingedrukt). Er verschijnt een mededeling in beeld
tijdens het laden, en wanneer het laden voltooid is
start het programma automatisch.,

Herhaal deze procedure wanneer u een volgende serie
lessen wilt laden,

HET MENU SCHERM

Nadat het programma is 'geladen verschijnt dit scherm
dat u een aantal keuzemogelijjkheden biedt., Om tijdens
het runnen van het 'programma-naar dit scherm terug te
keren drukt u op de SYSTEM RESET toets.Druk nooit op de
SYSTEM RESET toets wanneer de computer bezig is een
nieuwe serie lessen te laden,

U maakt uw keuze uit de opties van dit menu door de
RETURN toets in te drukken tot uw keuze wordt
aangegeven. Druk vervolgens de spatie balk in.

Nadat u een 1les heeft gekozen verschijnt een tekst
pagina die op deze 1les betrekking heeft. Na het lezen
hiervan toetst u de spatie balk weer in, waarna een
volgende pagina of het menu verschijnt.

Wanneer u een voorbeeld programma wilt zien wordt dit
automatisch geassembleerd en gerund. Door het indrukken
van de RETURN toets wordt het programma regel voor regel
gerund. Daarbij wordt de beschrijving van iedere regel
aan de onderzijde van het scherm afgebeeld, Wanneer u de
RETURN toets indrukt wordt de aangegeven instructie
uitgevoerd. De vlaggen en registers worden
overeenkomstig gewijzigd, waarna de volgende instructie
kan worden gerund, Wanneer het runnen van het programma
wordt beeindigd door een 'BRK' instructie, aan het einde
van het programma of door een fout, komt de MC tutor
terug in de EDIT mode. Nu kunt u het programma wijzigen,
het assembleren (om het opnieuw te runnen), terugkeren
naar het hoofd menu of het programma wissen om een nieuw
programma 1in te typen. De volgende toetsen kunt u in de
EDIT mode gebruiken:

Toets Funktie

START Om het programma te assembleren, waarna het
gerund kan worden.

SELECT Om terug te keren naar het hoofd menu voor een

volgende les.
OPTION Om het programma |uit |het geheugen te wissen.

In EDIT mode kunts u elk| alfanumeriek karakter
gebruiken bij het intypen, van het programma. Daarnaast
kunnen de volgende karakters worden gebruikt:

Om een getal aan te geven.

$ Om een hexadecimaal getal aan te geven,
@) Om adresserings modes aan te geven,

R Idem,

Wanneer het programma in de EDIT mode komt, of
wanneer u in de EDIT mode de RETURN toets indrukt komt u
in het LABEL gebied, Wanneer u een regel wilt labelen
kunt u dit label nu intoetsen (tot een maximum van 6
karakters) en de spatie balk indrukken. In het andere
geval drukt u alleen de spatie balk in. Vervolgens kunt
u een mnemonic intoetsen en weer op de spatie balk
drukken (een mnemonic bestaat altijd uit 3 letters).
Vervolgens voert u de operand in, bestaande uit O tot 7
karakters,

U kunt de cursor besturings toetsen gebruiken om het
programma te editten., Door de toets met de betreffende
pijl in te drukken beweegt u de cursor in die richting.
op deze wijze kunt u ieder deel van het programma snel
en eenvoudig wijzigen,

Wanneer u in de EDIT mode de START toets indrukt komt
u in de RUN mode. Ook in deze mode hebben een aantal
toetsen een speciale funktie. ’

Toets Funktie

OPTION Wisselen tussen decimale en hexadecimale
weergave.,

SELECT Wisselen tussen onder en zij weergave,

Automatisch wordt de zij weergave gekozen, In de onder
weergave worden de adressen en de OP-codes van het
programma afgebeeld.

- Overgaan in EDIT mode.

In het menu is steeds een mogelijkheid om een volgende
serie lessen te laden. Dit/\gebfiikt u om de tweede,
derde en vierde serie lessen| te laden, De eerste serie
wordt tezamen met het hoofdpriogranmma geladen, Voor dat
de lessen worden geladen vraagt het programma om een
bevestiging.

N.B. Druk tijdens het laden niet op SYSTEM RESET.

INHOUDSOPGAVE, VAN DE CASSETTE

Kant 1

Hoofdprogramma Eerste fage van de lessen:
Instructies voor het gebruik van het programma
Les 1 : The registers (De registers).

Les 2 : Memory locations (Geheugen locaties).
Les 3 : Load and store (Laden en opslaan).

Oefening 1 voor les 3.

Les 4 :
Les 5 :

What's a flag? (Wat is een vlag?).
Addition (Optellen).

Oefening 1 voor les 5
Oefening 2 voor les 5

Les 6 :

Substraction (Aftrekken).

Oefening 1 voor les 6
Oefening 2 voor les 6

Les 7 :
verlagen),

Increments and decrements (Verhogen en

Oefening 1 voor les 7

Les 8 :

Tweede fase van de lessen
Transfers (Overbrengen).

Oefening 1 voor les 8

Les 9 H
Les 10 :

Binary notation (Binaire notatie).
Shifts and rotates (Schuiven en roteren),

Oefening 1 voor les 10

Les 11 : Two more flags (Nog twee vlaggen),

Oefening 1 voor les 11

Les 12 ¢ Logical instructions (Logische instructies).
Oefening 1 voor les 12

Les 13 : Indexed addressing (geindexeerde
adressering).

Oefening 1 voor les 13

Kant 2
Derde fase van de lessen
Les 14 : Branches and jumps (Sprongopdrachten).
Oefening 1 voor les 14
Oefening 2 voor les 14
Oefening 3 voor les 14

Les 15 : Compares (Vergelijken), ,

Oefening 1 voor les 15
Oefening 2 voor les 15

Les 16 Subroutines
Oefening 1 voor les 16
Les 17 . : Hexadecimal notation (Hexadecimale notatie),

Oefening 1 voor les 17

Oefening 2 voor les 17

Les 18 : Binary coded decimal (Binair gecodeerd
decimaal).

Oefening 1 voor les 18
Vierde fase van de lessen

Les 19 : The stack (De stack).
Oefening 1 voor les 19

Les 20 ¢ More addressing modes (Andere adressering
modes).

Oefening 1 voor les 20
Oefening 2 voor les 20

Les 21 : More on the stack (Meer over de stack).
Oefening 1 voor les 21

Les 22 : The BIT instruction (De BIT instructie).
Oefening 1 voor les 22

Les 23 ¢ Interrupts
Les 24 : What now? (Hoe verder?).

Les 1 De|registers

Deze 1les behandelt de Tegisters en hun gebruik, In de
6502 processor, de belangrijjkste chip van de ATARI,

bevinden zich drie tégisters,” Dit zijn resp, de
acumulator, het X-register en het Y-register., De
accumulator is een algemeen te gebruiken register en de
meeste instrukties kunnen gebruik maken van dit

registers De X en Y registers worden index registers
genoemd en zijn bestemd voor meer speciale toepassingen.

Wanneer u een programma runt ziet u de inhoud van de
registers links op het scherm afgebeeld, De vlaggen
worden ook afgebeeld, maar daar hoeft u in deze fase
niet op te letten, omdat deze later worden besproken,
Een register kan een getal van O tot 255 bevatten,

Les 2 Geheugen locaties

Wanneer u bekend bent met BASIC weet u wat een
geheugen locatie is. Wanneer u in BASIC PEEK gebruikt
leest u een geheugen locatie. En iedere keer dat u POKE
gebruikt schrijft u naar een geheugen locatie., De ATARI
computers hebben tussen 16 en 64K RAM geheugen en tussen
10 en 24K ROM geheugen. Een geheugen locatie vertoont in
die zin overeenkomst met een register dat het een getal
van 0 tot 255 kan bergen. '

RAM betekent Random Access Memory, wat in feite
inhoudt dat RAM geheugen locaties van inhoud kunnen
veranderen., Programma's die in RAM zijn opgeslagen gaan
verloren wanneer de stroom wordt uitgeschakeld. Dat is
de reden dat programma's moetn worden gesaved op
cassette of disc wanneer ze later weer gebruikt moeten
worden,

ROM staat voor Read Only Memory, wat inhoudt dat ROM
geheugen locaties niet van inhoud kunnen veranderen.

Pogingen om de inhoud van ROM te veranderen hebben geen
effect, Het ROM geheugenwondt voor de fabricage van de
computer geprogrammeerd. |[Het bevat gewoonlijk machine
code programma's die|cde |)\computer vertellen wat er
gebeuren moet na het “imschakelen. In de ATARI is
BASIC in ROM opgeslagen, \U kunt ook ROM uitbreidings
'cartridges' kopen die achter in de computer kunnen
worden gestoken. De inhoud van het ROM geheugen gaat
niet verloren wanneer de computer wordt uitgeschakeld,

Wanneer u programma's runt met de simulator hebt u de
beschikking over 1K geheugen. Dit geheugen gebied loopt
van adres 0O tot 1023 (in RAM), en u kunt dit gebruiken
zoals u wilt, Het programma dat u met de simulator maakt
wordt op een andere plaats in het geheugen opgeslagen en
kan niet beschadigd worden,

Les 3 Laden en opslaan

Laad en opslag instructies beinvloeden geheugen
locaties en registers. Een laad opdracht verandert de
inhoud van een register. Een getal tussen O en 1023
wordt aangegeven achter de laad instructie, het adres
van de geheugen locatie waarvan de inhoud in het
register wordt geplaatst, Ook kunt u een getal
(aangegeven met een £) opgeven van O tot en met 255 dat
in het register wordt geplaatst. De volgende laad
instructies zijn beschikbaar op de ATARI:

LDA : Laad accumulator.
LDX ¢ Laad X-register.
LDY : Laad Y-register.

Voorbeelden van het gebruik van laad instructies:

LDA 1000 : Laad accumulator met inhoud van locatie
1000,
LDT #34 : Laad het Y-register met het getal 34.

Een opslag instructie wordt gebruikt om de inhoud van
een geheugen locatie te veranderen, De inhoud van ieder
van de drie registers kan worden opgeslagen in het
geheugen, Het getal achter de|opslag instructie geeft de

geheugen locatie dan. Voorbeelden van opslag
instructies:
STX 1 : Sla de inhoud van het X-register op in

geheugen locatie 1,
STA 1019 : Sla de inhoud van de accumulator op in
geheugen locatie 1019.

Oefening 1 voor les 3

Dit is een eenvoudig programma om het gebruik van
laad en opslag instructies te tonen. Druk de RETURN
toets in om een regel te runnen, DE 'BRK' instructie
dient om het runnen van het programma te stoppen en
terug te gaan in de EDIT mode. In de EDIT mode kunt u
door START in te drukken het programma opnieuw rumnen,
Door indrukken van SELECT keert u terug naar het hoofd
memu zodat u een andere les of oefening kunt kiezen. Met
behulp van de cursor toetsen kunt u het programma
wijzigen.(u hoeft hierbij niet de CONTROL toets te
gebruiken), Door intoetsen van OPTION wist u het huidige
programma, zodat u een nieuw programma kunt intoetsen.

Les 4 Wat is een vlag?

Deze 1les behandeld vlaggen in het algemeen en de nul
vlag in het bijzonder. een vlag kent twee toestanden.
Hij kan .ge"set" zijn, wat inhoudt dat hij de waarde 1
heeft, of hij kan ge"reset" zijn, wat betekent dat hij

10

de waarde O heeft. Een vlag is dus als een schakelaar,

waarbij "aan" overeenkomf mef)|l en "uit" met O.

1iés 5| Optellen

Deze les behandelt eenvoudige optellingen in machine
code, De instructie ADC (Add with carry) wordt gebruikt
voor optellen in MC, De 6502 heeft geen instructie om op
te tellen =zonder carry. Daarom is het nodig voor een
optelling de carry vlag te "reset'-ten. Hiervoor wordt
de instructie CLC (Clear carry) gebruikt, De ADC
instructie telt de waarde van carry op bij het resultaat
van de optelling, dus =zal de uitkomst 1 hoger zijn
wanneer de carry vlag ge-"set" is,

De carry vlag wordt overeenkomstig het resultaat van
de optelling ingesteld, Wanneer het resultaat groter is
dan 255 wordt de carry vlag ge-"set", Wanneer dus de
carry vlag ge-"set" is na een optelling moet 256 bij het
resultaat worden opgeteld om het juiste antwoord te
vinden. Wanneer het resultaat bij voorbeeld 10 is met de
carry vlag ge~"set" moet het juiste antwoord 266 zijn.

Oefening 1 bij les 5

Dit is een voorbeeld programma om het gebruik van ADC
en CLC te tonen. Merk op dat de ADC instructie wordt
gevolgd door een geheugen locatie of een getal,
aangegeven door #.

Oefening 2 bij les 5

Dit korte programma introduceert de SEC (Set carry
vlag) instructie. Dit omdat de SEC instructie de carry
vlag 1 maakt, die bij de ADC instructie wordt opgeteld.

11

Les 6 Aftrekken

Bij de 6502 gaat jafitrekken pop eenzelfde wijze als
optellen, waarbij de ‘carrypvlag' echter andersom werkt.
De instructie hiervoor is SBC (Substract with carry) Bij
aftrekken wordt de carry vlag gebruikt om een waarde te
"lenen". Daarom moet de carry vlag in plaats van
ge-'"reset" ge-"set" wordenmet de SEC instructie. Als na
het aftrekken de carry vlag nul is betekent dit da het
resultaat te klein is, en dat 256 afgetrokken moet
worden om het juiste antwoord te vinden, Als voor het
aftrekken de carry vlag ge-"reset" is zal het resultaat
1 minder zijn dan wanneer de vlag ge-"set" is.

Oefening 1 voor les 6

Dit voorbeeld programma toont het effect van de carry
vlag voor en na de SBC instructie. Let op het resultaat
van het aftekken van O van 3 wanneer de carry vlag nul
is.

Oefening 2 bij les 6

Dit is een kort programma dat toont wat gebeurt
wanneer u een aftrekking doet met een negatief
resultaat, Let daarbij op de carry vlag.

Les 7 Verhogen en verlagen

Deze instructies zijn eenvoudig te begrijpen en toe

12

te passen., Het verhogen |dient om de inhoud van een
register of een geheugenplocatiie met 1 te vermeerderen, A
1s een register 255 bevat' ~voor de verhoging zal het
daarna O bevatten, |Eencverilaging dient om de inhoud van
een register of " eenp gelieugen locatie met 1 te
verminderen, Als het register of de geheugen locatie 0O
bevat voor de verlaging dam zal die daarna 255 bevatten,
De volgende verhoging en verlaging instructies zijn
beschikbaar:

DEX : Verlaag X-register
DEY : Verlaag Y-register,
INX : Verhoog X-register,
INY : Verhoog Y-register,
DEC ¢ Verlaag geheugen locatie.
INC ¢ Verhoog geheugen locatie,

Oefening 1 bij les 7

Dit programma gebruikt alle eerder genoemde instructies

Les 8 Transfer (Overbreng) instructies

Een transfer is het overbrengen van een waarde van
een register naar een ander.De mnemonics van alle
overbreng instructies beginnen met een T, De volgende
letter geeft de herkomst aan en de derde de bestemming.
De volgende instructies zijn beschikbaar:

TAX ¢ Breng accumulator over naar X.
TXA : Breng X register over naar accumulator.
TAY : Breng accumulator over naar Y.
TYA ¢ Breng Y register over naar accumulator,

13

Twee andere speciale transfer instructies zullen
later worden besproken.,

Oefening’ L bij-'les 8

Dit programma toont de werking van transfer
instructies. Laat u niet misleiden door de eerste TXA
instructie. Deze brengt het X register over naar de
accumulator, dus de accumulator bevat de waarde O na de
instructie.,

Les 9 Binaire notatie

Deze 1les behandeld een nieuw talstelsel, het binaire
stelsel, in dit systeem woden maar twee cijfers
gebruikt, nul en een. Een vlag is een goed voorbeeld van
binaire notatie, omdat een vlag alleen de waarde een of
nul kan hebben, Na het doornemen van de les over binaire
getallen kan de volgende tabel van nut zijn:

Waarden van bit 7 tot bit O:
Bit nummer 7 6 5 4 3 2 1.0
Waarde 128 64 32 16 8 4 2 1

Les 10 Shifts and Rotates (Schuiven en roteren)

Deze instructie houdt direct verband met het
veranderen van binaire cijfers. Ale schuif en roteer
instructies worden gevolgd door een A als de instructie

14

op deaccumulator betrekking heeft, of door een getal als
de instructie een gehengen[llocatie betreft. De volgende
lijst geeft een overzicht van de schuif en roteer
instructies die beschikbaar||zijn/jop de 6502:

ROR Rotate right
Dit is een 9 bit rotatie Alle bits in de accumulator
of de geheugen locatie worden 1 bit naar rechts

geroteerd. De carry wordt in bit 7 geplaatst en bit O in
de carry.,

ROL Rotate left

Dit is ook een 9 bit rotatie. Alle bits worden 1
plaats naar links geroteerd, decarry wordt in bit O
geplaatst en bit 7 in de carry.

LSR Logical shift right

Hierbij wordt een nul in bit 7 geplaatst en schuiven
alle andere bits naar rechts. Bit nul wordt in de carry
geplaatst, Deze instructie heeft het effect van een
deling door 2. De carry geeft aan of er een "rest" van
een halve bit is overgebleven,

ASL Arithmetic shift left

Er wordt een nul in bit O geplaatst en alle bits
schuiven een plaats naar links, De inhoud van bit 7
wordt in de carry geplaatst. Deze instructie heeft het
effect van een vermenigvuldiging met 2. De carry geeft
aan dat het resultaat te groot was en 256 bij het
antwoord meot worden opgeteld.

Oefening 1 bij les 10

Dit is een programma dat alle schuif en roteer
instructies van de 6502 gebruikt, Let vooral op het
effect op de carry van alle instructies,

15

Les 11 Two more flags (Nog twee vlaggen)

Deze les behandelt) jde~proverfilow vliag en de negatief
vlag. Vaak kan de overflow vlag na een reken operatie
veranderd zijn., De vlag is 1 als na een instructie het
teken verkeerd is, dat wil'zeggen een carry van bit 6
naar bit 7. De instructie CLV (clear overflow) wordt
gebruikt om de overflow vlag te "reset"-ten. De negatief
vlag geeft na een instructie de toestand van bit 7 , de
teken bit, weer. Wanneer na een instructie bit 7 een is,
is ook de negatief vlag een, en andersom,

Oefening 1 bij les 11

Dit programma demonstreert in welke gevallen de
overflow en negatief vlaggen ge-"set" en ge-"reset"
worden,

Les 12 Logical instructions (logische instructies)

Deze instructies beinvloeden ook direct binaire
getallen, Hier wordt een waarheids tabel gegeven voor
alle logische instructies. Bij een logischerinstructie
worden alle bits van de accumulator vergeleken met de
bits van een geheugen locatie of een getal, en het
resultaat van de vergelijking wordt in de accumulator
geplaatst.,

ORA Logical or accumulator (logische or op de
accumulator)

16

Resultaat 0 1 1 1
Een of beide bits 1 geeft als resultaat 1, anders O,

AND Logical and accumulator (logische and op de
accumulator)

Resultaat 0 0 0 1

Als beide bits 1 zijn is het resultaat 1, anders Q.

EOR Exclusive or accumulator
Input1 0011
Input 2 0101

Resultaat 0 1 1 0
Als beide bits 1 of O zijn is het resultaat O, anders is
het resultaat 1.

Oefening 1 bij les 12

Dit voorbeeld programma gebruikt deze drie logische
instructies,

Les 13 Indexed addressing (geindexeerde adressering)
Bij deze adressering wordt de inhoud van het X of Y

register opgeteld bij het opgegeven adres om het te

17

gebruiken adres te vinden. Voorbeelden van geindexeerde
adressering:

LDA 1000,X Tel de inhoud 'van X op-bij 1000 en laad de
accumulator met de inhoud van dit adres.

EOR 300,Y Tel de inhoud van ¥ op bij 300. Pas
vervolgens een exclusive OR toe op de accumulator en dit
adres,

18

Les 14 Branches and jumps (Sprongopdrachten)

Deze instructies worden' gebruikt om de volgorde
waarin de instructies|))van het programma worden
uitgevoerd te veranderen. Normdal worden de instructies
in volgode van het laagste adres naar het hoogste
uitgevoerd. Een sprong instructie is equivalent aan het
GOTO statement in BASIC. Een voorwaardelijke
sprongopdracht komt overeen met IF,,,THEN GOTO. Wanneer
u met de simulator programma's schrijft moet u voor een
sprong een label opgeven, Om een 1label in te voeren
drukt u niet op de spatie balk voor u de instructie
intypt. In plaats daarvan typt u een label van ten
hoogste 6 karakters in, gevolgd door indrukken van de
spatie balk, Wanneer u een sprong naar een label wilt
uitvoeren typt u de naam van de label in na de

instructie, De volgende sprong instructies zijn
beschikbaar:

JMP Sprong naar een label

BEQ Sprong indien nul (nul vlag ge-"set'")

BNE Sprong indien niet nul

BCS Sprong indien carry ge-"set"

BCC Sprong indien carry niet ge-"set"

BVS Sprong indien overflow (overflow vlag

ge—"set")

BVC Sprong indien geen overflow

Oefening 1 bij les 14
Dit programma gebruikt het X register om van 10 af te
tellen tot O. BEQ wordt gebruikt om de waarde nul te
detecteren.

Oefening 2 bij les 14

Dit programma deelt 58 door 5. Na afloop van de run

19

bevat het X register het antwoord en het Y register de
rest.

Oefening| 3> big les| 14

Dit programma vermenigvuldigt de inhoud van X met de
inhoud van Y, U kunt het "programa wijzigen om andere
getallen met elkaar te vermenigvuldigen, wanneer de
uitkomst maar niet groter is dan 255.

Les 15 Compares (Vergelijkingen)

Een vergelijking is een aftrekking die de accumulator
niet verandert., Hij beinvloed de vlaggen op dezelfde
wijze als een aftrekking., Een vergelijk instructie ka
gebruikt worden om het X of het Y register te
vergelijken, =zowel als de accumulator, Het is echter
niet nodig de carry vlag 1 te maken, omdat we niet te
maken hebben met een echte aftrekking., Vergelijk
instructies in combinatie met sprongopdrachten bieden de
programmeur vele mogelijkheden. De volgende vergelijk
instructies zijn beschikbaar:

CPM Vergeli jk accumulator met een getal of een
geheugen locatie,
CPX Vergelijk X register met een getal of een
geheugen locatie,
CPY Vergelijk Y register met een getal of’een
geheugen locatie,

Oefeningen 1 en 2 bij les 15
Deze voorbeeld programma's tonen de werking van
vergelijk instructies., Let op het veranderen van de
vlaggen en verander het programma om te zien hoe het

werkt.,

Les 16 Subroutines

20

Een subroutine is als een GOSUB commando in BASIC. Om
een subroutine aan te soepen gebruikt u JSR (Jump to
subroutine). De instructie wordt gevolgd door een label,
zoals bij JMP. Deze) jimstructie werkt exact gelijk als
JMP, echter wanneer na een JSR instructie een RTS
(return from subroutine) weordt uitgevoerd springt de
computer terug naar de instructie na de JSR instructie.
De RTS instructie komt dus overeen met RETURN in BASIC.

Oefening 1 bij les 16

Dit programma gebruikt subroutines om 5 met 8 te
vermenigvuldigen.

Les 17 Hexadecimal

Dit is een tal stelsel zoals het decimale stelsel en
het binaire stelsel, De volgende tabel kan van nut zijn:

Dec -Bin Hex Dec Bin Hex
0 0000 0 8 1000 8

1 0001 1 9 1001 9

2 0010 2 10 1010 A

3 0011 3 11 1011 B

4 0100 4 12 1100 C

5 0101 5 13 1101 D

6 0110 6 14 1110 E

7 0111 7 15 1111 F

Qefening 1 bij les 17
Dit programma gebruikt hexadecimale getallen,

voorafgegaan door een $ karakter. Steeds als u dit
karakter tegen komt betekent het dat het gegeven getal
in HEX is, U kunt het in uw eigen programma's gebruiken
om hexadecimale getallen aan te geven. Tijdens het
runnen van het programma kunt u wisselen tussen decimale
en hexadecimale notatie door OPT in te drukken. Druk
tijdens het runnen van dit programma op toets gpr om dit

21

te proberen,

Les 18 Binary coded decimal '(binair gecodeerd decimaal,
BCD)

In dit systeem wordt een, byte opgedeeld in 2 delen
die ieder een decimaal cijfer:aangeven, Om over te gaan
op BCS wordt de instructie SED (Set decimal mode flag)
gebruikt, Om terug te gaan dient de instructie CLD
(clear decimal mode flag)., Om met een getal in BCD te
werken wordt het omgezet in HEX., Daarom is het
noodakelijk om HEX mode in te schakelen wanneer in BCD
wordt gewerkt, Denk eraan dat hoewel BCD hexadecimale
getallen gebruikt, de cijfers A - F niet worden
gebruikt,

Oefening 1 bij les 18

Dit programma demonstreert BCD, Kies =zodra het
programma wordt gerund de HEX mode, anders =zal de
uitkomst geen betekenins hebben. De ADC en SBC
instructies kunnen in BCD gebruikt worden, de carry vlag
wordt ge-"set" als de uitkomst groter dan 99 is en
ge-""reset" als de uitkomst kleiner dan 00 is.

Les 19 The stack

De stack is 1 pagina van het geheugen, page 1. De
stack gebruikt dus 256 bytes (HEX 100) van het geheugen,
vanaf locatie 256 tot 512 (HEX: 100 tot 200). De stack
pointer staat oorspronkelijk op 255 (HEX: FF). Hier
wordt 100 HEX opgeteld, =zodat de eerste invoer van de
stack gebeurt op 1FF. Volgende invoer verlaagt de stack
pointer, het weghalen van invoer verhoogt de pointer, De
volgende instructies hebben invloed op de stack:

PHA Breng accumulator naar de stack
PLA Breng inhoud stack over naar accumulator
TXS Breng de inhoud van het X register over naar

22

de stack
TSX Breng de inhoud, van_de stack over naar het X

register
Oefening "1 bij'les 19

Dit programma toont het) gebruik van de hier boven
vermelde instructies, Denk eraan dat ook de instructies
JSR en RTS de stack beinvloeden,

Les 20 More addressing modes (andere adresserings modes)

De wijze van adressering bepaald waar de 6502 zijn
gegevens vandaan zal halen, De verschillende modes
worden wuitgebreid besproken in de les., Hier volgt een
lijst van alle instructies die in de verchillende modes
kunnen worden gebruikts

Implied:

BRK CLC CLD CLI CLV DEX DEY INK
INY NOP PHA PHP PLA PLP RTS SEC
SED SEI TAX TAY TSX TXA TXS TYA

Merk op dat NOP staat voor No Operation en niets
doet. De instructie RTI (return from interrupt) wordt
hier niet vermeld, omdat deze niet door de simulator
wordt verwerkt,

Accumulator addressing
Deze adressering wordt aangegeven door de letter A
achter de instructie, en geeft aan dat de instructie op
de accumulator moet worden uitgevoord. De volgende

instructies zijn beschikbaar:

ASL A LSR A ROL A ROR A

23

Absolute addressing

De volgende instructies! /kinnen worden uitgevoerd op
een absoluut geheugen adxes:

ADC AND ASL BIT CMP CPX CPY DEC
EOR INC LDA LDX LDY I"LSR ORA ROL
ROR SBC STA STX STY

Denk er aan dat de instructies JMP en JSR absolute
instructies 2ijn, die met de simulator echter alleen met
labels kunnen worden gebruikt.

Zero page addressing

De volgende instructies kunnen met zero page
addressing worden gebruikt:

ADC AND ASL BIT CMP CPX CPY DEC
EOR INC LDA LDX [LDY LSRR ORA ROL
ROR SBC STA STX STY

Immediate addressing
De immediate adresserings wijze wordt aangegeven door
een (#) voor een getal. De instructies die bij deze

wijze van adresseren kunnen worden gebruikt zijn:

ADC AND CMP CPX CPY EOR LDA LIX
LDY ORA SBC

Absolute,Y addressing
Het Y register wordt opgeteld bij het adres wat een
nieuw adres oplevert. Dit nieuwe adres wordt gebruikt
voor de instructie. De volgende instructies kunnen

worden gebruikt:

ADC AND CMP EOR LDA LDX ORA SBC gra

24

Absolute,X addressing

Dit komt overeen met ‘ahsolute,Y echter het X register
wordt gebruikt in plaats~van,het;)Y register, De volgende
instructies zijn beschikbaar:

ADC AND ASL CMP DECMEOR INC LDA
LDY LSR ORA ROL ROR SBC STA

(Indirect,X) addressing

Bij deze wijze van adresseren wordt de inhoud van het
X register opgeteld bij de inhoud van een zero page
adres, wat een ander zero page adres oplevert, De inhoud
van deze twee byte =zero page pointer wijst naar een
ander adres, waarop de instructie wordt uitgevoerd., De
volgende instructies zijn beschikbaar:

ADC AND CMP EOR LDA ORA SBC STA
(Indirect),Y addressing

Bij deze mode wordt een zero page adres opgegeven,
Dit adres is een twee byte pointer naar een ander adres,
De inhoud van het Y register wordt vervolgens opgeteld
bij dit adres, wat een ander adres oplevert waarop de
instructie wordt uitgevoerd., De volgende instructies
kunnen worden gebruikt:

ADC AND CMP EOR LDA ORA SBC STA
Zero page,X addressing
Deze adressering komt overeen met absolute,X
adressering, echter wordt een zero page adres opgegeven

in plaats van een absoluut adres. Deze adressering
gebruikt daarom maar twee bytes per instructie in plaats

25

van drie, De volgende instructies kunnen worden
gebruikt:

ADC AND ASL CMP | /DEC[:||EQR)J| INC LDA
LDY LSR ORA ROL ROR . SBC ~STA STY

Zero page,Y addressing

Deze adressering komt overeen met zero page,X, echter
het Y register wordt gebruikt in plaats van het X
register, De volgende instructies kunnen worden
gebruikt:

LDX STX
Relative addressing

In de simulator moet deze adressering worden gebruikt
met een label, Een relatieve sprong wordt alleen dan
gemaakt als de voorwaarde in de instructie waar is. In
dat geval wordt een sprong byte bij de programma teller
opgeteld. De sprong byte wordt opgeslagen als "two's
complement". Daarom kan de programma teller met niet
meer dat +127 of -128 worden veranderd. Let er daarom op
als u relatieve sprongen gebruikt dat de sprong byte
niet te groot is. Een relatieve spronginstructie
gebruikt maar twee bytes, terwijl een absolute sprong er
drie nodig heeft. De volgende instructies kunnen worden
gebruikt:

BCC BCS BEQ BMI BNE BPL BVC BVS
(Indirect) addressing
Deze adressering kan niet met de simulator worden
gebruikt. Een gewone 6502 assembler kan deze adressering
echter wel verwerken. De inhoud van een adres levert een

nieuw adres op, dat voor de instructie wordt gebruikt.
De enige instructie die deze adressering gebruikt is JMP

26

(xxxx).

Oefening 1 len 2 bij les 20

Deze voorbeeld programma's gebruiken de meest
gecompliceerde wijzen van adressering. Bestudeer deze
programma's zorgvuldig omdat ze u veel over programmeren
kunnen leren.

Les 21 More on the stack (meer over de stack)

Deze les bespreekt hoe vlaggen in de 65302 processor
worden opgeslagen in het Processor Status Register
(PSR). De vlaggen worden op de volgende wijze opgeslagen:

Negatief vlag
Overflow vlag
Niet gebruikt
Break vlag (wordt niet gebruikt door de
imulator)
: "Interrupt geblokkeerd" vlag
Nul vlag
Carry vlag

AONH®ND I <=

Slechts twee instructies beinvloeden direct het PSR.
Deze saven en herstellen de waarden van de verschillende
vlaggen door het PSR op de stack op te slaan en weer
terug te halen. De instructie PHP (Push PSR onto stack)
slaat alle vlaggen op, de instructie PLP (Pull PSR from
stack) brengt de vlaggen weer terug in het PSR,

Oefening 1 bij les 21

Dit programma demonstreert wat er gedaan kan worden
met de instructies PHP en PLP.

27

Les 22 The BIT instruction

Deze instructie is in feite'een AND instructie die de
accumulator intact laats De-BLT, instructie wordt gevolgd
door een geheugen adresy “wat'-in-zero page of absolute
addressing kan worden opgegeven. De inhoud van de
accumulator wordt ge-AND met.de geheugen locatie en de
vlaggen worden overeenkomstig ingesteld., Bit 7 van de
geheugen locatie wordt in de negatief vlag en bit 6 in
de overflow vlag geplaatst. De nul vlag wordt ge-"set"
als geen enkele bit in de geheugen locatie overeenkomt
met de bits van de accumulator.

Oefening 1 bij les 22
Dit programma toont de werking van de BIT instructie,
Les 23 Interrupts

In deze les wordt een poging gedaan een zeer
gecompliceerd onderwerp op heldere wijze te bespreken:
Interrupts. Met de simulator kunnen geen interrupt
routines geschreven worden, De instructies SEI (Set
interrupt disable vlag) en CLI (Clear interrupt disable
vlag) kunnen met de simulator worden gebruikt om het
effect ervan op de vlaggen te tonen.

Wat nu?

Hiermee bent u aan het einde gekomen van de cursus
6502 machine code programmeren. U kunt nu uw eigen MC
programma's schrijven met behulp van een normale 6502
assembler, Deze assemblers zijn minder gebruikers
vriendelijk, maar bieden meer mogelijkheden. Een fout in
uw programma kan er echter voor zorgen dat uw computer
"crasht" of vast loopt. Daarom is het aan te raden ieder
machine code programma te saven voor het wordt gerund,.

28

Denk erom dat een normaal MC programma bliksemsnel wordt
uitgevoerd, en niet op;-€em; toetsindruk wacht om de
volgende instructie uit te''voeren, zoals de simulator!

Als u niet zeker weet welks efifect een instructie zal
hebben kunt u deze altijd uitproberen met de simulator.
Typ het programma in, controleer de werking en kijk of
de vlaggen worden veranderd. als bedoeld, Wanneer u
tevreden bent over de werking kunt u het programma in
een echte assembler intoetsen,

VEEL SUCCES!

29

APPENDIX A: TE GEBRUIKEN INSTRUCTIES

De instructies die de simulator kan verwerken zijn:

Instructie Functie
ADC Add with carry (optellen met carry)
AND Logical AND accumulator (logische AND)
ASL Arithemetic shift left (schuiven naar links)
BCC Branch on carry clear (sprong als carry=0)
BCS Branch on carry set (sprong als carry=1)
BEQ Branch on zero (sprong als 0)
BIT Test memory bits against accumulator
(test bits van geheugen tegen accumulator)
BMI Branch on minus (sprongindien neg.)
BNE Branch on not equal zero (sprong indien niet Q)
BPL Branch on positive (sprong indien pos.)
BRK Break (stop programma)
BVC Branch on overflow clear
(sprong indien geen overflow)
BVS Branch on overflow set (sprong indien overflow)
CLC Clear carry flag (stelt carry vlag op 0)
CLD Clear decimal mode flag (beeindig decimale mode)
CLI Clear interrupt disable flag
(stelt interrupt disable vlag op 0)
CLV Clear overflow flag (oerflow vlag = 0)
CcMp Compare accumulator (vergelijk met accum.)

30

CPX
CPY

DEC
DEX
DEY
EOR
INC
INX
INY
JMP

JSR
LDA

LDX
LDY
LSR
NOP
ORA
PHA
PHP
PLP
ROL
ROR

RTI

Compare X register|(idem X register)
Compare Y register;(idem Y register)

Decrement memony clecatien
(verminder geheugen-locatie)
Decrement X register, (verminder X register)

Decrement Y register (verminder Y register)

Exclusive OR accumulator

(Exclusief OR operatie op accumulator)
Increment memory location

(verhoog geheugen locatie)

Increment X register (verhoog X register)
Increment Y register (verhoog y register)
Unconditional jump (onvoorwaardelijke sprong)

Jump to subroutine (sprong naar subrout.)
Load accumulator (laad accumulator)

Load X register (laad X register)

Load Y register (laad Y register)

Logical shift right (schuif naar rechts)

No operation (geen functie)

Logical OR accumulator (OR operatie op accum.)

Push accumulator onto stack

(breng accum. inhoud naar stack)

Push processor status register onto stack
(breng PSR over naar de stack)

Pull PSR from stack (haal PSR van de stack)

Rotate left (roteer naar links)
Rotate right (roteer naar rechts)

Return from subroutine (terugkeren van sub.)

31

SBC
SEC
SED
SEI
STA
STX
STY
TAX
TAY
TSX
TXA

TXS

TYA

Substract with carry (aftrekken met carry)

Set carry flag (Maak 'carry vlag 1)
Set decimal made,flag)(jovergaan op decimacl)

Set interrupt disable flag
(interrupts niet toegestaan)
Store accumulator (sla accumulator inhoud op)

Store X register (idem x register)
Store Y register (idem Y register)
Transfer accumulator to X register
(breng accumulator over naar X register)

Transfer accumulator to Y register

(breng accumulator over naar Y register)
Transfer stack pointer to X register
(breng stack pointer over naar X reg.)
Transfer X register to accumulator
(breng X register over naar accum.)
Transfer X register to stack pointer
(breng X register over naar stack pointer)

Transfer y register to accumulator
(breng Y register over naar accum.)

32

APPENDIX B: SAMENVATTING FOUTMELDINGEN

Soms verschijnt een foutmelding aan de onderzijde van
het beeld. Gewoonli jk jzuilen)fouten aan het licht treden
bij het assembleren of ‘runmen vam een programma. Wanneer
een foutmelding verschijnt) kunt u RETURN indrukken om
terug te keren naar de "EDIT mode om de fout te
herstellen,

Duplicate label error: Deze melding geeft aan dat een
label meer dan eens voorkomt. Wanneer u bij voorbeeld
twee maal het label 'FRED' heeft gebruikt weet het
programma niet welk label u bedoelt. Verander de label
namen, zodat iedere naam slechts 1 maal voorkomt.

Label not found error: Dit betekent dat bij een
instructie waarin een label werd gebruikt geen
overeenkomstige 1label werd gevonden. Deze fout zou bij
voorbeeld optreden bij de instructie JMP JOHN wanneer de
computer. het label JOHN nergens kan vinden.

Number bigger than 255 error: tijdens het assembleren
werd een getal gevonden groter dan 255, terwijl de
computer een getal kleiner of gelijk aan 255
verwvachtte.De instructie LDA £400 zou deze foutmelding
opleveren,

Resulting memory address greater than 1024 error:
Deze fout kan alleen tijdens het runnen optreden. Het
betekent dat een geheugen locatie groter dan 1024 werd
gebruikt. Wijzig het programma zodat het alleen de
adressen 0 tot 1024 gebruikt.

Error 7 (check manual): deze foutmelding mag nooit
optreden. Wanneer deze fout optreedt betekent dat dat
het programma niet goed geladen is. Spoel de tape terug
en laadt opnieuw.

33

Instruction not recognized error: Deze melding
verschijnt wanneer tijdens het assembleren een
instructie niet wordt begrepen, gewoonlijk veroorzaakt
door een fout in de jsyntaxis,van de instructie. Er
behoort een spatie te ~2ijn 'tussen de mnemonic en een
label en tussen de mnemonic en de operand (indien
aanwezig). In een label, "“mnemonic of operand behoren
geen spaties te zijn. Kontroleer ook of u het juiste
aantal komma's, haakjes e.d. heeft gebruikt.

34

OVERZICHT

Assembly language: Taal " 'die mnemonics gebruikt als
weergave van MC instructies.\||Een assembly language
programma kan niet worden gerund wanneer het niet is
geassembleerd.

Binary: Twee. In het binaire stelsel worden de
cijfers O en 1 gebruikt om getallen weer te geven.

Binary coded decimal (BCD): Een systeem waarin een
"nybble" een decimaal cijfer weergeeft. Een byte kan
daarom twee cijfers weergeven.

Bit: EFen binaire eenheid, is ofwel 1 of O.

Bug: Een fout of een ongewenste eigenschap van een
programma, die maakt dat het programma niet of niet goed
werkt,

Character: Een element van een verzameling van
symbolen, zoals een letter, cijfer of teken.

Chip: Gebruikelijke benaming voor geintegreerde
schakeling, afgeleid van het silicium schijfje waarop de
schakeling is aangebracht.

Computer: Een machine die gegevens verwerkt volgens
bepaalde instructies en de resultaten van de verwerking
naar buiten brengt. Benaming voor het geheel van
processor en I/0 apparatuur.

Crash: Term die aanduidt dat de computer geen invoer
van het toetsenbord meer accepteert. Oplossing is het
uit en aan schakelen van de computer.

Cursor: Een Teken dat op het TV scherm aangeeft waar

35

gegevens worden ingevoerd.
DATA: Een gegeven dat de computer kan verwerken.

Editing: Het proces vam, het wijzigen van gegevens
voor men ze door de processor laat verwerken.

Execute: Het wuitvoeren van de instructies van een
programma. Een micro processor voert een programma uit
door het lezen en vervolgens verwerken van de
instructies.

Graphics: Term die aanduidt dat gegevens in de vorm
van beelden worden gepresenteerd. Beelden op het TV
scherm worden afgebeeld in "pixels".

Hardware: De vaste delen van de computer.

Hexadecimal: Getal stelsel gebaseerd op 16
verschillende tekens als cijfers. Gewoonlijk worden de
tekens 0-9 en A-F gebruikt.

Instruction: Een bepaalde opdracht aan de processor.
Een MC programma bestaat uit instructies.

Machine Code (MC); Binaire weergave van de
instructies aan de micro processor. Machine code kan
door de micro processor worden verwerkt zonder verdere
bewerking.

Memory: Verzameling van geintegreerde schakelingen
waarin gegevens worden opgeslagen. Iedere bit wordt
opgeslagen als een elektrisch signaal in de IC,.
Geheugens worden onderverdeeld in RAM en ROM, hun
grootte wordt aangegeven in K (kilobytes).

Micro processor: Een geintegreerde schakeling die

alle componenten bevat voor het verwerken van gegevens.
Een micro processor moet verbonden zijn met I/0

36

apparatuur en geheugen om te kunnen werken.

Mnemonic: een groep 'van'3 of 4 karakters die een MC
instructie voorstellend|Iledere mnemonic wordt omgezet in
een MC instructie door een assembler,

Nybble: Een groep van" 4 bits. Een byte bestaat uit
twee nybbles.

Object program: Een programma in MC. Een "source
program', dat niet door de processor kan worden
uitgevoerd, wordt geassembleerd door een assembler, die
het "object program" genereert, Dit "object program"
bevindt zich in het geheugen en kan worden uitgevoerd
door de processor.

Operating system: Een machine code programma,
onderdeel van de systeem software, dat de processor in
staat stelt te functioneren.

Page: Gebruikt in verband met geheugen: 265 bytes.

Program: Een verzameling opdrachten die de micro
processor een bepaalde taak laten uitvoeren.

RAM: Random Access Memory. Naar dit geheugen kan
worden geschreven, zowel als van gelezen. In dit
geheugen wordt het programma opgeslagen. Bij
uitschakelen van de computer gaan alle in RAM opgeslagen
gegevens verloren.

ROM: Read Only Memory. Dit geheugen wordt in de
fabriek waar de computer gefabriceerd wordt
geprogrammeerd. Het bevat gewoonlijk het operating
system en andere programma's die de computer nodig heeft
bij het inschakelen. Het in- en wuitschakelen van de
computer heeft geen effect op het ROM geheugen.)

Software: De computer programmatuur.

37

Source program: Programma bestaande uit mnemonics die
voor mensen begrijpelijk zijne Dit programma moet worden
geassembleerd voor het kan worden uitgevoerd.

38

© aackosoft ./ new generation
269

